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Numerical Methods for a Model for Compressible 
Miscible Displacement in Porous Media 

By Jim Douglas, Jr. and Jean E. Roberts 

Abstract. A nonlinear parabolic system is derived to describe compressible miscible displace- 
ment in a porous medium. The system is consistent with the usual model for incompressible 
miscible displacement. Two finite element procedures are introduced to approximate the 
concentration of one of the fluids and the pressure of the mixture. The concentration is 
treated by a Galerkin method in both procedures. while the pressure is treated by either a 
(lalerkin method or by a parabolic mixed finite element method. Optimal order estimates in 
L2 and essentially optimal order estimates in Lx are derived for the errors in the approximate 
solutions for both methods. 

Introduction. We shall consider the single-phase, miscible displacement of one 
compressible fluid by another in a porous medium under the assumptions that no 
volume change results from the mixing of the components and that a pressure-den- 
sity relation exists for each component in a form that is independent of the mixing. 
These equations of state will imply that the fluids are in the liquid state. Our model 
will represent a direct generalization of the model [3], [4], [7] that has been treated 
extensively for incompressible miscible displacement. 

The reservoir S will be taken to be of unit thickness and will be identified with a 
bounded domain in R2. We shall omit gravitational terms for simplicity of exposi- 
tion; no significant mathematical questions arise when the lower order terms are 
included. 

Let c, denote the (volumetric) concentration of the ith component of the fluid 
mixture, i -I,...,n. We assume that a density p, can be assigned to the ith 
component that depends solely on the pressure p; moreover, we shall take this 
equation of state in the form 

(1 I) '=z,~~~~~~p, dp, 

where z, is the "constant compressibility" factor [12, p. 10] for the ith component. 
The assumption of miscibility of the components implies that the Darcy velocity of 
the fluid is given by 

(1.2) u k - V 

where k = k(x) is the permeability of the rock and ,u = ,u(c) = ,u(cj,...,cj) is the 
viscosity of the fluid. Assume that no volume change is induced by mixing -the 
components and that a diffusion coefficient, which can combine the effects of 
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molecular diffusion and dispersion [13], exists that is component-independent; i.e., 
let 

(1.3) D d f{dI + lu I(d,E(u) + d,E' (u))), 
where E(u) = [Uk U/I U 12] is the 2 X 2 matrix representing orthogonal projection 
along the velocity vector and E' (u) = I - E(u) its orthogonal complement, and 

4 = f(x) is the porosity of the rock. Then, conservation of mass of the ith 
component in the mixture is expressed by the equation 

(1.4) d(c1p1).) + V (cipiu) - v (pDvc) = cipiq, 

where q is the external volumetric flow rate, and ci is the concentration of the ith 
component in the external flow; c must be specified at points at which injection (i.e., 
q > 0) takes place, and ci is assumed to be equal to ci at production points. 

Carry out the differentiation indicated in (1.4), divide by pi, and use (1.1). The 
following equation results: 

(1.5) aa-i + +zicap V +(Cu)c+1u VP - V (Dvci) 

-ZiDVc vp = Ciq. 

If the components are of "slight compressibility" [12, pp. 10-11], then the term 

ziciu - Vp is effectively quadratic in the velocity, which is small in almost all of the 
domain, and can be neglected; we shall do so. The term -ziDVci * Vp = zi,tk-1u 

DVci is small in comparison to the term u * vci that comes from the transport term, 
as both z1 and D are small; thus, we shall neglect this term as well, so that we arrive 
at the equations 

dc. a 
(1.6) - _+pZ c - -+ V* (c u) - V (Dvci) = Ci i= I. n.I 

It is convenient to transform the system given by (1.6) to obtain an equation for 
the pressure. Since we assume the fluid to occupy the void space in the rock, it 
follows that 

n n 

(1.7) C c1(X, t) = 
- 
c1(X, t) = 1. 

Add the n equations of (1.6); then, 

(1.8) f ci a-t + V * u = q, 

or, equivalently, 

(1.9) _Z_C - - (k VP q 

Equation (1.9) can be used along with n - 1 equations of the form (1.6) to describe 
the compressible miscible displacement process, or the equations (1.6) can be put 
into nondivergence form by writing the V - (ciu) term as ciV - u + u * Vci and 
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substituting for V * u by means of (1.8) or (1.9). If this is done, the component 
conservation equations become 

(1.10) (-' + cipzi - .zjC a, 

+u * Vc-V (DVci) = (c - c)q, i,...,n. 

The numerical methods that we shall introduce and analyze below can be applied 
to the n component model; however, for clarity of presentation we shall confine 
ourselves to a two component displacement problem. Let 

(1.11) c = = 1-C, 

a(c) = a(x, c) = k(x)A(c)-', 

b(c) = b(x, c) = k(x)ci{zi- E ZiC1}, 

2 

d(c) = d(x, c) = O(x) E zjc1. 
i=1 

Then, the differential system can be written in the form 

(a) d(c)pap+ upd(c)ap-V (a(c)Vp)=q, 
(1.12)att 

(b) ac + b(c) aP + u * Vc -V * (DVc) = (c- -c)q. 

We shall assume that no flow occurs across the boundary: 

(1.13) (a) u v0= on Q, 

(b) (DVc-cu).v= 0 on8i2, 

where v is the outer normal to i2. In addition, the initial conditions 

(1.14) (b) c(x, O) co(x), x E S, 

must be given. 
Note that b(c) = d(c) = 0 if the compressibilities z1 and z2 vanish; thus, the 

model for the compressible problem converges to that of the incompressible model 
as the fluids tend toward incompressibility. 

The purpose of this paper is to formulate and analyze two numerical schemes for 
approximating the solution of the system (1.12)-(1.14). In both procedures the 
concentration equation (1.12b) is treated by a parabolic Galerkin procedure. In the 
first method the pressure equation (1.12a) is treated by a parabolic Galerkin 
procedure as well, and in the second it is treated by a parabolic mixed finite element 
technique. 

The analysis is given under a number of restrictions. The most important is that 
the solution is smooth; i.e., q is smoothly distributed, the coefficients are smooth, 
and the domain has at least the regularity required for a standard elliptic Neumann 
problem to have H2(Q)-regularity and more if the piecewise-polynomial spaces used 
in the finite element procedures have degree greater than one. We shall also consider 
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only molecular diffusion, so that D = O(x) dm1I The coefficients a, d, and 4 will be 
assumed bounded below positively as well as being smooth. Only the continuous-time 
versions of our methods will be studied here. 

The finite element methods will be formulated in Section 2. The scheme based on 
approximating the pressure by a Galerkin method will be analyzed in Section 3, and 
the one employing a parabolic mixed finite element method for the pressure will be 
treated in Section 4. The principal results of the paper are embodied in the 
L2-estimates for the error given in the inequalities (3.35) and (4.31) and in the 
LO-estimates (3.38), (3.39), and (4.32). The L2-estimates are of optimal order, and, 
except for a factor of log h-1, so are the L -estimates. 

2. Formulation of the Finite Element Procedures. Let h = (hC hr), where hC and 
h are positive. Let 9h = 91 C W1l'(Q) denote a standard finite element space 
such that 

(2.1) inf ||Z Zhhllq ? M|lZ'll?qhc 

for z E WIl+ q(2) and 1 < q < so, where llZllk,q is the norm in the Sobolev space 
Wk,q( ) and liZIlk = llZllk,2. Assume that 6Th is associated with a quasi-regular 

polygonalization of Q and piecewise-polynomial functions of some fixed degree 
greater than or equal to 1; thus, all standard inverse relations hold on 6-'h' and they 
will be used frequently in the analyses to come. The approximation to the concentra- 
tion will be denoted by Ch and will be given by a map of the time interval J = [0, T] 
into 6h based on a standard Galerkin method related to the weak form of (1.12b) 
given by 

(2.2) ('P ac , z) + (u . Vc, z) + (DVc, Vz) + (b(c) aP, z) =((c - c)q, z) 

for z E H1(Q) and 0 < t < T, where the inner products are to be interpreted to be in 
L 2(2) or L2(&2)2, as appropriate. If the approximations for the pressure and the 
Darcy velocity are denoted by Ph and Uh, respectively, then Ch is defined to be the 
solution of the relations 

(2.3) (Cht z) + (Uh . VCh, Z) + (DVch, VZ) 

+(b(ch) at ' h 
((oh Ch)q, z), Z Eh 

for t E J. The function Ch coincides with c where q > 0 and with Ch where q < 0. 

Equation (2.3) will be used to give the concentration in connection with both 
methods for approximating p and u. In addition, the initial approximate concentra- 

tion Ch(O) must be determined; several ways to specify Ch(O) will be indicated after 
the requirements on c(0) - ch(O) become clear in the convergence analysis. The 

boundary condition was used in the derivation of the weak form of the equation. 
The Galerkin method for the pressure is based on the weak form of (1.12a) given 

by 

(2.4) (d(c) a-p, v) + (a(c)Vp, vv) = (q, v), v E H'(0), 
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for 0 < t < T. Let 9Lh C W1,(f?) be a piecewise-polynomial space of degree at 
least k associated with another quasi-regular polygonalization of f2; then, 

(2.5) inf ||V - Vh?I1q S MlVl<lk+l qhp I ? q < ox, 

for v E Wk+l,q( 2). Then,Ph: J * h will be determined as the solution of 

(2.6) (d(Ch) It7V) + (a(cj)7Ph V70 = (q, V), v E_ h I t (= J, 

starting from initial values Ph(O) to be discussed later. The definition of the overall 
Galerkin procedure is completed by requiring that 

(2.7) u, = -a(c,) vP' 

The parabolic mixed method that we shall employ as an alternative way to 
approximate the pressure is a simple generalization of a method introduced and 
analyzed by Johnson and Thomee [10]. Let V= {v E H(div; Q): v- v- 0 on a } 
and W= L2(Q0). Then, a saddle-point weak form of (I.12a) is given by the system 

(2.8) (a) (d(c) Lp w) + (V u, w) = (q, w), w E W, 
(b) (a(c)'u, v) -(V v, p) = 0, v E V. 

Now, let Vh X Wh be a Raviart-Thomas [14], [18] space of index at least k associated 
with a quasi-regular triangulation or quadrilateralization (or a mixture of the two) of 
S2 such that the elements have diameters bounded by hp. If Q is polygonal, then 
impose the boundary condition v v = 0 on ai strongly on Vh*. If au is curvilinear 
and k = 1, use the boundary element described in Johnson-Thomee [10] and impose 
the boundary condition on Vh by interpolating the condition v- v 0 at two Gauss 
points on each boundary edge. (This is a nonconforming feature; the analysis below 
does not cover this case explicitly, though it should extend without much difficulty 
to cover it.) Since the outer boundaries of petroleum reservoirs are not known 
exactly and since the regularity of the solutions of the differential equations is 
usually quite limited by the presence of sources and sinks, we shall assume Q to be 
polygonal and, for intuitive purposes, think of k as being either zero or one; thus, we 
shall, in particular, assume in the analysis that the boundary condition is represented 
exactly in Vh. The approximation properties for Vh X Wh are given by the inequah- 
ties 

(a) inf jIv - VhllO = inf IIv - VhIIL2(U)2 < MvIIlk+lhp 
(2.9) Vh rVh vcV ,,V 

(b) inf 11V * (V - Vh)110 < M{llvllk+? + 1l1v VI1k+j}hp, 
Vh, Vh 

for v E V n Hk+ 1(2)2 and, in addition for (2.9b), V v E Hk+? (2), and 

(2.10) inf IIw - WvhllO ? MIlw?k+lhp, w E Hk ?(a) 
WhE~ Wh 
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The mixed method for the pressure equation becomes the finding of a map { Uh, Ph}: 

J '7Vh X Wh such that 

(2.11) (a) (d(Ch) at ,w) + (V uI,w) = (q,w), w E Wh, 

(b) (aQhYuhC v) -(vlV, Ph) v E Vh, 

for t E J. Initial values must be specified for P(O); consistent initial values uh(O) can 
then be computed from (2.1 Ib). 

The Galerkin procedure defined by the combination of (2.3) and (2.6)-(2.7) 
represents an essentially traditional finite element approach to the nonlinear para- 
bolic system (1.12), and it is a direct extension of a known method for treating the 
incompressible miscible problem [3], [4], [7], [8]. Thus, it is of some importance to 
establish that this, the simplest, finite element method for the compressible problem 
converges at an asymptotically optimal rate for smooth problems. It is well known 
that the physical transport dominates the diffusive effects in realistic examples of 
incompressible miscible displacement. In the liquid-liquid, compressible model 
studied in this paper, the transport will again dominate the entire process. Thus, it is 
more important to obtain good approximate velocities than it is to have extreme 
accuracy in the pressure. As in the incompressible problem [6], this motivates the use 
of the mixed method (2.1 1), now of parabolic type, in the calculation of the pressure 
and the velocity. 

The two procedures described above can easily be generalized to treat the 
n-component model. The pressure equation can be handled exactly as above, so long 
as the argument c in the coefficients a(c) and d(c) is interpreted as the vector 
(Cl,... , cn -}. Instead of a single concentration equation, there will be n - 1 such 
equations, and it is convenient to allow the approximation of ci to lie in '?thZi' 
i = 1,... , n - 1, where these spaces are not required to coincide. In practice, these 
spaces should be time-dependent [4], and it is possible that the pressure space, either 
?Jh or Vh X Wh, should also adapt with time. We shall not treat the time-dependent 
?Pace procedure here. We believe that our analyses of the two-component model 
should extend to cover the n-component situation. 

3. Analysis of the Galerkin Procedure. We have remarked earlier that the location 
of the boundary of a petroleum reservoir is subject to some uncertainty; moreover, 
the primary concern in the evaluation of a miscible displacement process will lie in 
obtaining accurate information about the behavior in the interior of the domain. 
Consequently, we shall emphasize the interior behavior by considering either the 
no-flow boundary conditions (1.13) or by assuming 2 to be a rectangle and by 
replacing the no-flow boundary conditions by the assumption that the problem is 
periodic with 2 as period. This affects the method only in that t-th and Vh should 
reflect the periodicity. 

We shall find it convenient in the analysis to project the solution of the differen- 
tial problem (1.12) into the finite element spaces by means of coercive elliptic forms 
associated with the differential system. First, let c Ch: J -3 I"I-h be determined by 
the relations 

(3.1) (DV(c-c), Vz) + (u * V(c-c), z) + X(c-c, z) = O, Z E h 
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for t E J, where the constant X is chosen to be large enough to insure the coercivity 
of the bilinear form over H (2). 

Similarly, let p = Ph: J *h satisfy 

(3.2) (a(c)v(p -pf), vv) + ,u(p -fi, v) 0 O, v E Xh, t E J, 

where ,u assures coercivity over H'(2). Let 

(3.3) (a) D-c- e, - C-Ch, 

(3.3) ~~~(b) 'q=p-fl, 'a P Ph* 

It is a standard result [2] in the theory of Galerkin methods for elliptic problems that 

(a) 1lDllo + hcllDlljj < MllcII,+,1h'+ 

(b) 1IIqII0 + hpl|1II1 < MIIpIIk+lhk+1 

for t E J and a constant that depends on bounds for lower order derivatives of c and 
p. An argument similar to that used by Wheeler [ 19] can be applied to the 
time-differentiated forms of (3.1) and (3.2) to show that 

(a) + h| a-| ?M{IcI?++ ac h?+ v 
(3.5) at ahk?l 

(b) at at | { IPIk+ | at Ik+?IP 

where now M depends on lower order derivatives of c, p, and their first derivatives 
with respect to time. 

We shall begin by deriving an evolution inequality for the difference 7T between 
the projection p and the approximate solution Ph* The equations (2.6) and (3.2) can 
be differenced to show that 

(3.6) (d(Ch) at ,) + (a(c,)v7T, vv) 

({a(Ch) - a(c)) Vp. Vv) + ({d(Ch) - d(c)} V) 

- (d(C) a 'V) + u(, V), V E )t th' 

Select an7/at as the test function in (3.6) and observe the relation 

d-t(a(Ch)V7T. V7T) = 2 a((.h)V7T, V a7T) + ( aa 
(ch) aCh V7T, V7r) dt t Tl c at 

2-a(Cha)V() 
T 

v at) aa (C* V7, ) + aa a V) 
t~~) ~ 

h) ac at 2(a(ch)V at V- at + ch tV9 

Thus, 

(3.7) (d(Ch) at at ) + 2d (a(C)V, V) 

I aa \1Iaa ( a c\ 
=2 (a(C)a , )- 2 ( T C*)atv,v 

+ ( {a(Ch 
- )a(c)}Vp, V at) + ( d(Ch )-d(c)} at, at) 

-(d(C) 
a'Q 

St ) + u(1 At 
r 
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The only term in (3.7) that must be handled delicately is that involving a(ch )- a(c); 
it will be carried momentarily while the others are treated in a straightforward 
manner. We have assumed the coefficients d(c) and a(c) to be bounded above and 
below by positive constants independently of c. Thus, 

a7T2 id 
(3.8) d* -t |+2d(a(ch)V', V) 

at 0 2 dt~~~~~a 

sK[| a IIIV77TII0'0CIIV7TII0 +(| P||(llDl0 + 1lf40) + 11*1l + |a1| 

at 11 aa' 11 + 11 a' 1 I 0I? 

+ 2 (a(Ch)-a(c)) VP, Vat) 
1 atTo ~jVfI] 

Make the induction hypothesis that 

(3.9) 1IIly A K, 

for some constant K,. Apply (3.4), (3.5), and (3.9) to (3.8) to obtain the inequality 

a7T d 
(3.10) d*|t| + -t(a(Ch)V7 V7) 

s K lV.712+ 1 + h21+2 + h2k+2] + e 
2 

+2 ((a(Ch -a(c))vf, VP')v 

where K2 depends on K1 and IIa/3atII0,,, 1Iafi/8tII0,oo, IICII+?1 IIPIlk+?, and 

I IaP/tllk? t . Now, integrate (3.10) in time to see that 

a7 2 

(3.11) d* t- dT+ (a(ch)Vr, V7T)(t) 

< K2[j(IIv7TIIo + ii0iio) dTr (h2'?2 + hpk?2)tj 

+,ft at dT + 2j((a(ch) - a(c))Vp,V at dT 

+ (a(ch)VT, V7T)(O). 

Let us select an initialization procedure for the pressure and the concentration. 
Note that the values Ph(O) need to be chosen so that IIvr(O)II0 = O(h k+1) if 

optimality is to be preserved. While there are many ways to do this, the simplest one 
from the point of view of our analysis is to take Ph(O) to be the elliptic projection of 

the initial data. Analogous considerations will be seen shortly to apply to the choice 
of ch(O). Thus, we assign 

(a) p(0p() or (0)=0 
(3.12) ~(b) CM() - (o) or ~(O)= 0. 
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We can avoid an apparent loss of a factor hp by integrating the {a(ch )- a(c)}-term 
by parts in time. Thus, 

(3.13) ft({a(Ch) - a(c))} vfVa, dTd 

- ({a(Ch) -a(c)}Vp,7vT)(t) -J t{a(ch) -a(c)}V aP, VTT) dT 

t a( {a(Ch) -a(c)} VP, v17) dT 

K[I 
t 

(1IIPIIX +11afi1 0 (11010 + 11010) 

+ 
1IIPI,'0 1 a l 

+ 
1111|o 

17 
TIIV 10 dT 

< K[f0(IIv'nIIo + iitiio) dT + IIdt)IIo + hCl?2j 

0 a2 ?cIIvX(t)IIo + eftil aat || dt, 

by (3.4). The constant K in (3.13) depends on the L'(J; Wl'(0))-norms of p and 
afi/at. Since k > 1, it follows from (3.4), (3.5), the embedding inequality [16] 

(3.14) 11v110,cc <M(log h-1 ) /21VII 

holding on 6h and the trivial inequality jjvll, -c-- Mh-l1lv1ll that these norms are 
bounded for sufficiently smooth solutions. We can now combine (3.1 1) and (3.13) to 
obtain our desired evolution inequality for 7r: 

(3.15) - dT + iiv1r(t)112 

? K3[ (IIv0IIO + iitiio) dT + IIdt)IIo + hdT/2 + + I 

where K3 depends, in particular, on the induction bound (3.9). 
We can turn to the derivation of a corresponding evolution inequality for (. It 

follows from (2.2) and (3.1) that 

(3.16) 
ai 

Z) + (u - Vc, z) + (DVi, Vz) + (b(c) a-i, z) 

((C- 
- 

c)q, z) 
- 

z) + X(;, z) -b(c) a7l , z) z (E Xh- 

Note that 

(3.17) (c 
_ 
C) 

_ 
(ch 

_ 
Ch)_ 

+ q > 0, 
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Difference (3.16) and (2.3) and apply (3.17). Then, 

(3.18) at z) + (Uh V(, z) + (Dv(, vz) + (b(chy) at ,) 

=-( + ( )+,z) 
- ( ?tz) + X(D, Z) - (b(c) aq, z) 

+((Uh U) VCZ) + ((h)-bc)at Z) z E= h. 

Choose the test function z = a8/at, and move the terms (uh V(, z) and 

(b(Ch)0/t, z) to the right-hand side. It follows that 

(3.19) tat' aa+Id- at at 2 dt 

< K| a UhI0, 0 +| a + l + 11[ o +I ? || +|| j 

+ ((Uh - U) VC, av ) 

2 
[1712+1~1 7 12 2 k+ 

at | + K4 + 1 at 1 + hc + hp 

+ ((Uh -U) 
u) . V 

where K4 depends on K1 and various norms of the solution of the differential 
system. Next, observe that 

(3.20) ((uh - u) * c, (a(c)vp - a(Ch)Vph) vc, - 

((a(c) - a(Ch)) VPh * Ve, a) 

+ (a(c)VT -v e, ?+(a(c)V . ve, at 

s (a(c)Vri - ve, at + K5[1110 + lltilo + Iv'7TI1]0 at 

where K5 depends on K1. If (3.20) is applied to (3.19) and the resulting inequality 
integrated in time, then it can be seen that 

(3.21) Jt|| aat || dT + 11,t(t)11? 

where again K6 depends on K a. 
We wish to integrate by parts in space in the inner product in the last integral. 

First, shift e to c: 

(3.22) (a(c)vq - ve, -) = Ia(c)vq - vc, aac - )v - V, at. at at atV 
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Now apply the L??(Q)-error estimate [9], [11], [17] 

(3 .23) 11 VD110,00 < Mjjcll t+ s .h'c , 

with M depending on some lower order norms of c and p, to the last term of (3.22) 
to see that 

(a(c)vij. V?, ? Khk hl$ 
at p c at o' 

so that 

(3.24) a(c) 7q dT < Ecj- dT+ Khpkh2l at at~ pc 

cf||| t ||-~ dT+ K(h2k+2 + h2/+2). 

Next, if K*, > denotes the inner product on L2(aQ), 

(3.25) (a(c)v * vc, a) 

= , a(c) a - a(c)vc V aa + V (a(c) c) 

and note that the boundary integral vanishes for either the periodic problem or for 
the no-flow boundary condition, as DVc 0 = O on aQ for either the simple form 
D = pdn,I of the diffusion coefficient being analyzed here or the more general form 
given by (1.3). Since 

(3.26) | o (7 V (a(c)vc) t ) d-< E dT + Kh2+2? 
at ~ ()at P 

we are left with the single term inivolvinog V at/at. This term should be integrated by 
parts in time: 

(3.27) f'(71a(c)vc -v- )dT 

(71 a(c)vc - 7()(t) 

jt[( aq cvc v- ) + (a(c)pvc), vt)]d- 

< cIIv0(t)IIo + K[f IIvdIITdi + hpk?2. 

The various relations (3.22)-(3.27) and the trivial inequality 

(3.28) iig(t)112 = dtjIg12 dT S E| t || dT?+ K tIIgaodT 

can be combined with (3.21) to show that 

(3.29) li at 14 dT + l(i2 

K7[jI I1112 + a 2 + IIvII )dT + h2k+2 + 2h+2], 

with K7 dependent on K,. 
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The object is to combine (3.15) and (3.29) in a judicious manner so that we can 
obtain estimates in L'(J; H'(Q)) for both 7v and (, along with estimates in 
L2(J; L2(Q)) for 877/at and at/at. First, use the analogue of (3.28) for 7v to replace 
the L2(0)2-norms of V77 by H'(Q)-norms of 7v, and simultaneously apply (3.28) 
itself on the right-hand side of (3.15). Thus, 

lo l a O T +117T(t)112 t4K8|(117TI+ 1112 )d + qI2 2k+2 + h2/+27 (3.30) I dT + I"()I ?K8[f(Iv~ + i0) dTr+ hp + 

aqt a 2 

where, as usual, the constant K8 depends on K,. Now, take a (K7 + 1)-multiple of 
(3.30) and add it to (3.29). Require that the - appearing in (3.30) be sufficiently small 
that (K7 + 1)E < 2; this increases K8, but not K7. After a minor amount of 
collecting terms, we see that 

(3.31) JO( a l + t |) dr + Il (t)II2 + 1L77(t)112 

K9[jt(gIII2 + 11i7Th) dr 2 ?2k+2 h 2], 

with K9 depending on K1. Thus, it follows from the Gronwall lemma that 

(3.32) IItIIL-(J;H'(0)) + 
a 

; + IITIIL-(J;IIH'()) + a 
I 

< K*(hk+ lI+ h?+ l), 

where K* is supposed to depend on the induction bound K, for V77 in L(Q). The 
quasi-regularity of the polygonalization for the space 6Xh implies that 

(3.33) IIV7TIL;(J;L%(Q)) < K'(hk + hl6+'hp'). 

Adopt the restriction between the two spaces that 

(3.34) h -6+'h0' O ash - 0. 

If (3.34) holds, then K1 could have been taken to the arbitrarily small and a choice 
can be made for K* that is independent of K1. 

A justification of the induction hypothesis can be given at this point. What has 
been shown is that, if V77 is bounded uniformly by some constant K1, then V77 tends 
uniformly to zero as hp and hC tend to zero subject to (3.34). Now, the initial 
conditions were chosen so that V77(0) = 0; hence, for any fixed pair (hp, h,) (3.9) 
holds for 0 ? t ? Th for some Th > 0. The implication of (3.3) and (3.4) is that 
Th= Tfor (hp, hc) sufficiently small; i.e., (3.9) holds for small (hp, hc). 

The relation (3.34) is unimportant, since normally the parameters hp and h' would 
be selected such that 

0 < M < hl+'h -(k + ) 

so that 

hl+ 'h-' 
S 

Mh(+ I)k/(k+ 1) - 0 ash -O 0. 
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Error estimates in L2(Q) result from combining (3.32) with the bounds given by 
(3.4) and (3.5) for the projection errors. We see that, under the constraint (3.34), 

(3.35) lc - 
ChhllL(J;L2(0)) + hc.IIC - ChllLc(J;HI (0)) + 

a 
dc _ J(Ch i) 

+ IIP - Ph1111 IJ, 2(0)) 
+ hpIlU 

- 
Uh111,x(J ,L2()2) + ap t ( 

A-(h + 1+ hl+ ) 

where the constant K depends on spatial derivatives of order not greater than I + 1 
of c and ac/at and of order not greater than k + 1 of p and ap/at. The use of the 
LX-estimate (3.23) means that K involves a bit more than the minimal regularity of c 
and p that would be required by the approximation properties of the spaces 9h and 
(h in order that a bound of the form derived could hold; however, our primary 
objective of obtaining optimal rates of convergence has been achieved. 

We can derive an almost optimal LX-estimate from (3.32), as well. The bound 
(3.23) can be expanded to the more complete form [9], [11], [17] 

(a) 11I11o X + hcIIl1I11 < MJJcJ11+ lI xl+ '(log hZl) (3.36) 
,0C 

(b) 11711oKx + hpJiJqJ1 X < MllpJiJ?+1.hA+'(logh')'3, 

where a= 1 for = 1, a =0 for > 1, /= 1 for k= 1 and 3= 0 for k> 1. The 
embedding inequality (3.14) and the bound (3.32) imply that 

(3.37) U111,00(J;IL0()) + 117711 L-(J; L-(2)) 

fCK( hA + hl+ l ) [(log hp-1) + (log h-1l)/ 

Thus, it follows for k > I and / ? I that 

(3.38) H|c - Chill(J;L0(0)) + IIP - Ph1lL-(JuL0(0)) 

? K(hk + hl+ ')(log h;1 + log h-') 

The bounds (3.23) and (3.33) combine to give the estimate 

(3.39) | l- UhL(JL() K(hp + h? hp1); 
if hk+ and h`l are of the same size, then this estimate is of optimal order. Both 
(3.38) and (3.39) assume (3.34) to hold. 

We have shown that the standard Galerkin procedure as applied to the parabolic 
system describing compressible miscible displacement is asymptotically of optimal 
order in L2(Qi) and almost so in LX(Q) when the solution of the problem is smooth. 
Actual petroleum reservoir simulation would lead to less smoothness than we have 
assumed, and the argument that we have presented does not cover the case of 
sources and sinks, the wells that occur in a petroleum reservoir. Two arguments [6], 
[8], [12] have been constructed for the incompressible problem to handle sources and 
sinks, but each involves the equally unphysical assumption that the viscosity is 
independent of the concentration. 
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4. Analysis of the Mixed Method Procedure. We again find the projection of the 

solution of the differential problem into the finite element space 9Thh X Vh X Wh 

valuable in the analysis of the convergence of the method resulting from the 

combination of (2.3) and (2.11). Let J, the projection of the concentration, remain 

defined by (3.1), and let {uf, p}, the projection of the Darcy velocity and the 
pressure, be given as the solution of the elliptic mixed method equations 

(a) (d(c) ap, w) + (v a, w) = (q, w), W E Wh, 

(4.1) (b) (a(c)a, v) -(V v, p) 0, v E Vh, 

(C) (pi, 1) = (p,1) 

where a(c) = a(c)-1 and t E J. Set 

(4.2) (b) =u-P, 
7 

U-Ph, 

(b) p u u-u , a = u'-Uhl, 

and retain the definitions D = c - and ( = c-Ch. 

Initialize the approximations to concentration and pressure by taking 

(a) Ch(O) = c(O) or (0) = 0, 

(b) Ph(O) =p(O) or 7 (0) = O. 

It follows that u(O) = 0. Note that u(O) and f(O) can be computed, since ap/at(0) 

can be evaluated using the differential system. 
If the relations (4.1) and (2.8) are differenced, we see that the projection error 

satisfies the equations 

(4.4) 
(a) ( p, w) = O, w Wh, 

(b) (af(c)p, v) -(V * ,r 0 , v EVh. 

A projection almost identical to this one was analyzed in [6]; there, the average value 

of p over Q was set to zero to coincide with the average value of p, and here (4.1 c) 
imposes the equality of the average values of p and p. The effect of adding (4. ic) is 
to drop the necessity that the "inf sup" condition H2 of Brezzi [1] hold for the 
constant functions in Wh. Thus, the estimate [6, (5.2)] given by 

(4.5) IIPIIH(div;Q) + l7qllO MU1pIIk+3hp+' 

holds for t E J with the constant M dependent only on bounds for the coefficient 

a(c), but not on c itself. 
We shall need bounds on ap/at and a8q/at as well. Differentiate the error 

equations (4.4) with respect to t to obtain the relations 

(a) (V ap W 0, w E Wh S 

(4.6) ( aa ( w) =0,v 
(b) (a(c) ap,v)-( .V. ,? 

a 
(a (c) ac9,v) VeVh. 
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Let q E Wh and s E Vh, and write a?q/at and ap/at in the forms a?q/at = (q - 

ap/at) + (ap/at - q) and ap/at = (s - aui/at) + (au/at - s). Assume that (q, 1) 
= (p, 1). Then, 

(4.7) 

((~~ ai ~ au \ 
(a) (V*is - I ,W 11V S-- Wi, wGWhl ~~ ~at /at/ / 

(b) aas- v 
v- ( - ap 

at at~~~~~~_a 

P'V + S-- vv,q- h = ( aa t ) +( ( -at ) ) - (v*v,q at VEh 

The boundedness of the inverse operator for the mixed method over Vh X Wh 

demonstrated in [6, (4.4)] implies that 

(4.8) s- ? 
i 

q- C-- 1119110 s-- ?u q- ap 
at H(div; 2) at 0 at H(div; 2) at 01 

Thus, 

(4.9) +a 
at H(div; 2) at 0 

(M + 1) {lIlIo + inf au - sq + inf a q 

< M' 11P11k+ +| 
ap 

1 hk+1 
IIPI,? ? at k?3 J 

Now, difference (4.1a) and (2.1 1a) and take a7r/at as the test function: 

(4.10) (d(Ch) aga' )+ + a,T 

= ((d(ch) - d(c)) aP, at) - (d(c) at t) 

Next, difference (4.1b) and (2.11b), differentiate with respect to time, and then 
choose a for the test function; the following equation results: 

(4.11) 
a 

(a(Ch) ) - (v -) = ( at L(a(Ch) - a(c))] ) a) 
Since 

d 
(a(Ch)u,G)= 2 a 

((COG),a 
aa 

(Ch) athaa), dt ~ atachU,I 8c aJt' ' 

we see that 

(4 12) [ d)(a(Ch)a a(c h)a <t ) 

= Ra ( Cx h) )a(0C) rl , a )-2-(a (Ch ) ath ' a 
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Momentarily, we shall add (4.10) and (4.12); however, let us bound the four terms 
on the right-hand sides of the two relations. Note that (4.5), (4.9), and quasi-regular- 
ity imply that ap/at, ui, and aui/at are bounded in L'(Q); we have seen previously 
that ae/at is bounded. First 

(4.13) ((d(Ch) - d(c))a, a) < K{I1.110 + 11DI11} at |1 

Eat + K[II IIg + h1C?2]. 

Then, from (4.9), 

.T 
-.7 + Kh2k?2 (4.14) l(d(C)at'at at + 

Next, 

(4.15) ( [(a(ch ) -a(c))] a 

at~~~~a 
= (U c Ch ) a - _(C () a ]+ [a((Ch) 

- at(C)] l 

< Kllall0(lat|( +1 at 1 + Rh41( + 0111() 

< | at 11 + K(lel + 0 l( + hC2'2 

Finally, 

(4.16) |(+(ch) at a ) = ( C(ch)at,) 
+ 

(ac(ch)at ' )I 

? K 1111 + Kmin(h-', h-') at 11(112. 0 1 p C' ~~at W 

where we pass through the use of the L'-norm on either at/at or a and then 
quasi-regularity to return to the L2-norm. We are expecting to show that 

Ilall0 = O(h k+i + hl+'), t E J, 

and we should like to make an induction hypothesis of the form 

(4.17) IuIIomin(hp1, h-l) ) 0 as h - 0. 

Let us require that 

(4.18) min(hk+lh-1, hl+lh-1) -*0 ash -*0. 

Note that this condition is satisfied for the natural choice of a relation between hp 
and hc, namely that hk+ 1 and h j+ l are of the same size. Thus, if hp+ 1 = h 1+ l then 

hpk+ lh-1 = h(k+ ?)I/(l+ 1) hl+lhp1 = h('+ I)k/(k+ 1), p C p c 

and the first term always tends to zero; the second does as well if k > 1. If (4.18) 
holds, then we can expect that Ia 10 min(h-1, hc 

- 
) will tend to zero as h goes to zero. 
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Consequently, we assume inductively that (4.17) holds. Then, 

(4.19) a(a (c*) Cach < [min(h;1, hcl )11e110]2 at| 
2 

+ K 11Ie112 

Eat + KIIuIIg 

for h sufficiently small. 
We can sum (4.10) and (4.12) and apply the estimates (4.13), (4.14), (4.15), and 

(4.19) to obtain the evolution inequality 

(4.20) |t| + d (a(ch)u, e) 8 -a + K[1I +II2 + 1111?+ h2'+2 + h2k+2], 

where, by (4.17), the constant 8 can be taken as small as we like as h tends to zero. 
The constant K depends on norms of the solution of the differential system and on 
the value of E used in (4.15), but it does not need to depend on the choice of e used 
in (4.19). 

We turn again to the concentration equation. We reach (3.18) as before. The term 

(uh V , at/at) must be treated differently in order to get to the equivalent of 
(3.19). Note that 

(4.21) (uh Il, ?a 1 )| ooll' a0 + (u v(, 

<[11ulOloO + Kmin(hp1, hcIIuIIo]IIVtIIo at || 

The second term in the bracket tends to zero under the induction hypothesis (4.17), 
and lli llo can be bounded as follows. We have already assumed that Ilullo'. is 
bounded; thus, it suffices to estimate IpIPII 0,. For any v e Vh, 

I1PI10o < IIu - V110,00 + liv - uIIOSO0 

llu - vIIo, + KhIIlu - vllo + Khlllu - uillo, 

and a choice can be made for v such that 

(4.22) jIIpIIOO < KIIUllk+,?OOhl k 

For k > 1, IIlUIo,0 is bounded by any number larger than the L'-bound for u for 
small h; for k = 0, the bound for Ilila0l. is independent of h, though somewhat 
larger than the bound for u alone. In any case, 

(4.23) u at )< KIv10 a < e o 2 v 
at at ~~~at 0 IvI~ 

with K independent of h for sufficiently small h, provided that (4.17) holds. Thus, 
(3.19) remains valid, with K4 now dependent on (4.17). 

Next, note that 

(4.24) ((Uh- U) Vcl at)| =|(P+at 0 V 

< | at 11 + K(II 0l + hc'+) 
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so that 

(4.25) 4 a, a) 
+ d-(DV,V) 1,at at! dt 

< 
K(II112 + 11a711 + 

_ 
2 

+ h21+2 + h2k+2 

The inequalities (4.20) and (4.25) can be integrated in time and manipulated in the 
same fashion as in the previous section to obtain the following preliminary estimate: 

(4.26) II1IIL(J;H'(Q)) + at 2(j 2(Q)) + 11g11L(J;L2(U)2) at L (;L2(?) 

at L2(J;L2(g)) p C 

where the constant K depends on the L??(J; W+' '(0))-norms of c and ac/at, and 
the L?(J; Hk+3(Q ))-norms of p and ap/at, and the L?(J; Wk+2,,( 0))-norm of p. 
We must verify that the induction hypothesis (4.17) holds in order to finish the proof 
that (4.26) does hold as h tends to zero. 

The verification of (4.17) on the basis of the preliminary estimate (4.26) requires 
treating the two cases hp < hc and hp > hc. If hp < h ,then 

(4.27) lallO min(lhp1, h-1) < K( k+ lh?-1 + hl). 

For k > 1, the right-hand side of (4.27) is 0(hp + hl ) and tends to zero, as desired. 
For k = 0, it should be expected that hp < hc, and we must impose a relation 
between hp and hC to force the convergence to zero in (4.27). Let us require that 
there exist positive constants y, and T2 such that 

(4.28) y < h h - Y2 if k = 0; 

then hk+lh-1 = 0(h' /2) = 0(hc) and (4.17) holds. 
If, on the other hand, hC < hp, then 

(4.29) lll0 min(hp1, h-1) <-K(hp + h1+1hp1) < K(hk + h'), 

and, since k > 1, convergence to zero takes place. Thus, the inequality (4.17) holds 
as h tends to zero, and the estimate (4.26) is fully demonstrated. Note that two 
constraints (4.18) for all k and (4.28) for k = 0 have been imposed. 

It follows easily by integration of arT/at in time that 

(4.30) 2 K (hkF1 + h1? 1). ( ) IIS~~~11TIIL??(J;L2, < (p +hC+l 

We can now combine (4.5), (4.9), (4.26), and (4.30), along with inequalities (3.4a), 
(3.5a), and (3.36a) of the previous section to obtain error estimates. The direct 
application of (4.26) and (4.30) leads to the L2-bounds 

(4.31) Ilc - chlIL-(J;L2(g)) + hclIc - 
Ch11L0O(J;H1(Q)) + at at L2(J;L2(h)) 

+ 11 P PhIlIL(J;L2(Q)) + lU - UhlIL??(J;L2(U)2) 

+ aP a 1aPh < K ( hkp + h"), at at L2(j ;L 2(g)) ? (hF + 



COMPRESSIBLE MISCIBLE DISPLACEMENT IN POROUS MEDIA 459 

provided that (4.18) and, if k = 0, (4.28) hold. It should be observed that the 
velocity u is being approximated asymptotically to the same order as the pressure 
and the concentration; this should lead to better results at coarser levels of 
discretization than for the standard Galerkin method. Of course, more parameters 
are induced by the Raviart-Thomas spaces than for the usual finite element spaces 
for the same index k. An L?-estimate can be given for the concentration: 

(4.32) IC- ChIIL<(J;LC(a)) ?K(hp + hl ')log hZ, 

which is again almost optimal. An Lo-estimate for the pressure should also be 
derivable from an extension of the L' argument given in Johnson-Thomee [10]; 
since they do not offer any L' bounds for the velocity and since the velocity is still 
our main practical concern in the treatment of the pressure, we shall not pursue this 
estimate. 
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